
Build a correlation-based network from a matrix
Source:R/build_graph_from_mat.R
build_graph_from_mat.RdBuild a correlation-based network from a matrix
Usage
build_graph_from_mat(
mat,
transfrom.method = c("none", "scale", "center", "log2", "log10", "ln", "rrarefy",
"rrarefy_relative"),
r.threshold = 0.7,
p.threshold = 0.05,
method = c("WGCNA", "SpiecEasi", "SPARCC", "cor"),
cor.method = c("pearson", "kendall", "spearman"),
proc = c("Bonferroni", "Holm", "Hochberg", "SidakSS", "SidakSD", "BH", "BY", "ABH",
"TSBH"),
module.method = c("Fast_greedy", "Walktrap", "Edge_betweenness", "Spinglass"),
SpiecEasi.method = c("mb", "glasso"),
node_annotation = NULL,
top_modules = 15,
seed = 1115
)Arguments
- mat
Numeric matrix. A numeric matrix with samples in rows and variables in columns.
- transfrom.method
Character. Data transformation methods applied before correlation analysis. Options include: "none" (raw data), "scale" (z-score standardization), "center" (mean centering only), "log2" (log2 transfrom), "log10" (log10 transfrom), "ln" (natural transfrom ), "rrarefy" (random rarefaction using
vegan::rrarefy), "rrarefy_relative" (rarefy then convert to relative abundance).- r.threshold
Numeric. Correlation coefficient threshold; edges are kept only if |r| >= r.threshold.
- p.threshold
Numeric. Significance threshold for correlations; edges are kept only if p < p.threshold.
- method
Character. Relationship analysis methods. Options include: "WGCNA", "SpiecEasi", "SPARCC" and "cor".
- cor.method
Character. Correlation analysis method. Options include "pearson", "kendall", and "spearman".
- proc
Character. Correlation p-value adjustment methods. Options include: "Bonferroni", "Holm", "Hochberg", " SidakSS", "SidakSD","BH", "BY", "ABH", and "TSBH".
- module.method
Character. Network community detection (module identification) method. Options include "Fast_greedy", "Walktrap", "Edge_betweenness", and "Spinglass".
- SpiecEasi.method
Character. Method used in
SpiecEasinetwork inference; options include "mb" and "glasso".- node_annotation
Data frame. Optional node annotation table, containing metadata such as taxonomy or functional categories.
- top_modules
Integer. Number of top-ranked modules to retain for downstream visualization or analysis.
- seed
Integer (default = 1115). Random seed for reproducibility..